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Abstract—Event-triggered consensus of multiagent systems
(MASs) has attracted tremendous attention from both theoret-
ical and practical perspectives due to the fact that it er hles
all agents eventually to reach an agreement upon a » o\
quantity of interest while significantly alleviating uti’
communication and computation resources. This
to provide an overview of recent advances in
consensus of MASs. First, a basic frameworlk ~
triggered operational mechanio=-
sentative results and
reviewed and -
triggerers
mos?

of interest. Large-scale participation of agents makes it costly
or even impractical to control and manage MASs in a cen-
tralized manner. To solve this problem as well as to improve
reliability and scalability of MASs, it is preferable to carry out
“tributed control by utilizing local information exchanges
~ neighbors via shared communication networks. As a
~~=arch on distributed consensus control for

~t vears, see [1], [18]-[27].

~ontrol problems

~med
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M SENSllig,

integrated, are usuauy

by letting a group of agents weo..

other [1], [2]. As a fundamental problem of cooperauve won-
trol of MASs, consensus has attracted an interest of researchers
due to their widespread applications in various areas, such
as attitude alignment of satellites [3], formation of multiple
robots [4]-[6], estimation over sensor networks [7]-[11].
power management in power networks [12]-[14], distributed
optimization [15]-[17], and so on. An essential issue on con-
sensus of MASs is how to design a suitable control scheme
such that the states of all agents can reach a common quantity
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s
. time
wmat such a
L O excessive con-
.o and computation resources
iee s, wopeclally when lhe system states nearly approach
theu equlllbr]um< and there are no disturbances imposed on
the systems [34]. [35]. On the other hand, notwithstand-
ing beneficial control performance in the sense that fast
sampling can efficiently capture useful states of systems,
time-triggered sampling results in a high frequency of data
updates along with detrimental consequences, such as rising
costs and traffic congestion, thereby imposing restrictions on
other critical system monitoring and protection functions. It
is well recognized that communication congestion may cause
long latency, increased packet loss and reduced throughput,
inevitably degrading system stability, performance and reliabil-
ity [36]-[38]. Therefore, one important issue to be addressed
is how to design suitable control schemes which can sustain
the satisfactory control performance of MASs while sig-
nificantly reducing over-consumption of communication and
computation resources.
The introduction of evenl-triggered consensus control pro-
vides a positive solution to the above issue. Compared with
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Abstract—This paper is concerned with active =r
sharing and frequency regulation in an islande
grid under event-triggered communication. A
secondary control scheme with a sample
event-triggered communication mechanism
achieve active power sharing ar~ *
unified framework, wh~
change occurs ~
tion is viol~~
nicati~

P! Reference power injection of DG 7.
wer Reference frequency.
k Desired utilization level.
Local estimate of A? at DG i.
~*=l load power.

‘nstant for DG 7.
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voltage magnitude.
Vi Nominal set point of DG #’s voltage magnitude.
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m;, n; Active and reactive power droop cocfficients.
PE Load demand for DG i.
Pross Total active power loss of microgrid.

Maximum generation limit of DG i.
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s, renewable

<uy 1ntegrated into power systems

power grids, has attracted tremendous attention, since it is able
to improve rclmhilily cfficiency, and flexibility of power girds
significantly [2]. In «'Ln«,ml a microgrid is a small distribu-
tion power system consisting of distributed generations (DGs),
energy storages (ESs), and loads, and can be operated in a grid-
connected or islanded mode [3]. In a microgrid, there are some
fundamental issues to be addressed, including power quality
and frequency/voltage stability, and so on. This paper focuses
on active power/load sharing and frequency regulation.

To ecfficiently manage active/reactive power and  fre-
quency/voltage of microgrids, a hicrarchical control structurce
is widely employed, which involves a primary control layer, a
sccondary control layer, and a tertiary control layer [4]. As a ba-
sic method of power systems, frequency/voltage droop control is
employed in a primary control layer to realize some fundamen-
tal objectives, such as power/load sharing and frequency/voltage

1551-3203 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Industry 4.0 refers to the transformation of industry through the intelligent
networking of machines and processes with the help of information and
communication technology.
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Multi-agent systems (MASSs) are the basis and enabler of Industry 4.0.
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An MAS Is a system that consists of multiple autonomous agents
communicating with one another through a network medium so as to perform a
coordinated task or achieve a desirable collective behaviour.

| Agent: DJI Phantom Agent: Gavia-Surveyor
Agent: Pioneer 3-DX  Agent: MQ9-Reaper Unmanned Aerial Autonomous Underwater

Vehicle (UAV) Vehicle (AUV)
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Communication and Coordinated Control in MASs

A typical MAS

Universal Intelligent
Analog I/0 ) Edge Nodes
Robotics [
& Mation e ‘
°_ Control v ‘ T~
A ) ﬁ 555 | ' ]
".& \ ‘n\
““i+  Condition-Base .
= onitorin
Smart gl |
Automati ﬂ?% ‘
. \‘r :
u.’ .:
&

™\

Communication Networks

» Large number

» Spatially
distributed
» Communication

and computation
burden

Centralized
control

\

Distributed
control

SWINBURNE
UNIVERSITY OF
TECHNOLOGY




SWI N SWINBURNE

Multi-Agent Systems BUR [

Challenging Issues

A typical MAS Communication and control design

v Achieving satisfactory
control performance

v" Making efficient use of Communic
communication and ation
computation resources. Objective

How to design a suitable control
=~ scheme which can achieve these
@® | two objectives simultaneously?

Distributed event-triggered
coordinated control scheme
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A networked control system | » When to sample?
» When to transmit?
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Time-Triggered Sampling VS Event-Triggered Sampling
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Event-triggered coordinated control for MASs L Event-Triggered Control Scheme _:
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1 v" Collecting all measurements;
: v" Making a decision;
: v Generating an execution signal. f
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Control Protocol

v" Based on different ETCs
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MAS VS Single-Agent System
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distributed control protocol
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It is more complicated and challenging to design event-triggered control scheme for MASs
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Consensus Issues

Event-triggered coordinated control for MASSs
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Consensus Issues

Event-triggered coordinated control for MASSs :
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B Event-Based Sampling Schemes
[ Model-Based Event-Triggered Schemes
I Sampled-Data-Based Event-Triggered Schemes
Event-Triggered = Self-Triggered Sampling Schemes
Schemes
L Others Schemes

L. Ding, Q.-L. Han, X. Ge, and X.-M. Zhang, “An overview of recent advances in event-triggered consensus of multi-agent
systems,” IEEE Transactions on Cybernetics, vol.48, no.4, pp. 1110-1123, 2018.
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Event-Triggered =
Schemes

L. Ding, Q.-L. Han, X. Ge, and X.-M. Zhang, “An overview of recent advances in event-triggered consensus of multi-agent
systems,” |[EEE Transactions on Cybernetics, vol.48, no.4, pp. 1110-1123, 2018.
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Event-Based Sampling Schemes
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Control i |e
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e

Event
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’
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Communication Network

Agents’ dynamics
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|
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The event-triggered consensus scheme

was proposed in [D. Dimarogonas, IEEE TAC,
57(5), pp. 1291-1297, 2012.]

Ve
7 Control protocol:

’UJZ(t —K Z az] xz tz (t']]{;(t)))

JEN;

ETC: (e < Ai(zi(1))
ei(t) = {Ez(t%{) — xz(t)

— Z (Z?;j(ﬂ;‘z'(t) - ch(t))

D. Dimarogonas, E. Frazzoli, and K. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE
Trans. Autom. Control, vol. 57, no. 5, pp. 1291-1297, 2012.




SWIN | e
Distributed Event-Triggered Consensus i

Event-Based Sampling Schemes

Actuator

Control i |e

Sensor i

Event

1
i Trigger\—l"i—
1

Detector i

' Neighbors 9

Communication Network

Agents’ dynamics

Neighbors

I
|
!
I
|
!
|
|
!

The event-triggered consensiic echame
was proposed In [D" pepending on its
57(5), pp. 1291-129; neighbors’ event instants

7
7 Control protocol:

/ - .
’UJZ(t —K Z az] xz tz ( k(t)))
JEN; \_’//

ETC: (e < Ai(zi(1))
ei(t) = {L'z(t%{) — xz(t)

— Z (Z?;j(ﬂ;‘z'(t) - ch(t))

D. Dimarogonas, E. Frazzoli, and K. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE
Trans. Autom. Control, vol. 57, no. 5, pp. 1291-1297, 2012.
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Actuator

Control i |e

Sensor i

Event
Detector i

' Neighbors 4

Communication Network

Agents’ dynamics

Neighbors

I
|
|
I
|
!
|
|
|

X

The event-triggered consensus scheme

was proposed in [D. Dimarogonas, IEEE TAC,
57(5), pp. 1291-1297, 2012.1

7

/" Control protocol: The threshold function
requires continuous
ui(t) = —K Z communication

T flle®] @0
exlt) = ai(ty) 'g) o

D. Dimarogonas, E. Frazzoli, and K. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE
Trans. Autom. Control, vol. 57, no. 5, pp. 1291-1297, 2012.
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Event-Based Sampling Schemes

Actuator

Control i |e
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o+

Event

Detector i

’

Neighbors 4

Communication Network

Agents’ dynamics

Neighbors

X

|
7
/

- . . . . oy,

The event-triggered consensus scheme

was proposed in [D. Dimarogonas, IEEE TAC,
57(5), pp. 1291-1297, 2012.]

Contro’  Requiring that e;(t)— 0 as
z;(t)— 0, otherwise, Zeno
wi( behaviour will happen k(t)))

m
_|
O

fillles(Il = Ai(2:(t))

‘vii(t’)/; Z A (va(t) — Iy (t))

/

D. Dimarogonas, E. Frazzoli, and K. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE
Trans. Autom. Control, vol. 57, no. 5, pp. 1291-1297, 2012.
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Event-Based Sampling Schemes

|
Sensor i I

Control protocol: [D. Dimarogonas, IEEE TAC,
57(5), pp. 1291-1297, 2012.]
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1 1 )
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Control 7
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Communication Network
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I - - -

l Limitations
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|
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|

High frequency Requirement Restriction on
of control on continuous system
updates communication dynamics
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Event-Based Sampling Schemes Limitation 1

High frequency
e of control

|

|

|

|

1 updates /., Y. Fan, G. Feng, Y. Wang, and C. Song,
: “Distributed event-triggered control of
. multi-agent systems with combinational
| measurements,” Automatica, vol. 49, no. 2,
: pp. 671-675, 2013.

| v' W. Zhu, Z.-P. Jiang, and G. Feng, “Event-
|

|

|

I

|

|

|

|

|

|

Actuator 7 Sensor /

Event
Detector i

Control 7

Neighbors

Neighbors
Communication Retwork J-—— - _ based consensus of multi-agent systems
" Solution with general linear models,” Automatica,

————— vol. 50, no. 2, pp. 552-558, 2014

v W. Zhu and Z.-P. Jiang, “Event-based
leader-following consensus of multi-agent

only at its systems with input time delay,” IEEE

event instan Trans. Autom. Control, vol. 60, no. 5, pp.
N 1362-1367, May 2015.

, .
Agents’ dynamics The

update
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Actuator

Control i |e

Sensor i

1
i Trigger\—l"i—
1

Event
Detector i

' Neighbors 9

Communication Network

Agents’ dynamics

Neighbors

Event-Based Sampling Schemes T Solution 1 to avor d_irTg_thE - - —:
: frequency of control updates 1

7 Control protocol:

u;(t) = —K Z ai;(zi(th) — (t ))

JEN;

-
— - -

~__————-

CETC Ble®] < Aizi(t)

Y. Fan, G. Feng, Y. Wang, and C. Song, “Distributed event-
triggered control of multi-agent systems with combinational
measurements,” Automatica, vol. 49, no. 2, pp. 671-675, 2013.
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] v' C. Nowzari and J. Cortés, “Distributed event-triggered
Event-Based Sampling Schemes coordination for average consensus on weight-balanced
digraphs,” Automatica, vol. 68, pp. 237-244, Jun. 2016.

v S. S. Kia, J. Corté&, and S. Martnez, “Distributed event-
triggered communication for dynamic average consensus in
networked systems,” Automatica, vol. 59, pp. 112-119,
Sep. 2015.

v  H. Yu and P. J. Antsaklis, “Output synchronization of
networked  passive  systems  with  event-driven
communication,” |[EEE Trans. Autom. Control, vol. 59, no.
3, pp. 750-756, Mar. 2014.

v' G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson,

“Event-based broadcasting for multi-agent average

consensus,” Automatica, vol. 49, no. 1, pp. 245-252, 2013.
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Event-Based Sampling Schemes

Actuator
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Communication Network

Agents’ dynamics
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Solution 2 to avoiding continuous
communication

" Control protocol:
I .
: u;(t) = —K Z ai;(zi(th) azj(tk(t)))
l JEN;
!
CETE Sl < Aus()
! .
ei(t) = xi(t},) — ()

-

C. Nowzari and J. Cortés, “Distributed event-triggered
coordination for average consensus on weight-balanced digraphs,”
Automatica, vol. 68, pp. 237-244, Jun. 2016.
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Event-Based Sampling Schemes

Actuator

Control i |e

Sensor i I

i Trigger\—l"l—: Event

Detector i

’

Neighbors

Neighbors 9

Communication Network

Agents’ dynamics

Solution 2 to avoiding continuous
communication

I .
: uz(t —K g azg 'fcz tz xj(tk(t)))
I JEN;
|
I
|

-~

\ -

— - = o o
’—_ e B

— -—
N, . e e e —m——-—

G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Event-
based broadcasting for multi-agent average consensus,”
Automatica, vol. 49, no. 1, pp. 245-252, 2013.
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Event-Based Sampling Schemes Limitation 1 : Limitation 2 | ‘W

: yHigh frequency Requirement Restriction on

[ sensor, 2 ccsiss s=—=aafinuous system
/v E. Garcia, Y. Cao, and D. W. Casbeer, dynamics
“Decentralized event-triggered consensus
5 with general linear dynamics,” Automatica,
i vol. 50, no. 10, pp. 2633-2640, 2014.
control t N v' D. Yang, W. Ren, X. Liu, and W. Chen,
Neighbors . ;
“Decentralized event-triggered consensus
Communication Network for linear multi-agent systems under general |
directed graphs,” Automatica, vol. 69, pp. o I
242249, Jul. 2016.
Agents’ dynamics v T-H. Cheng, Z. Kan, J. R. Klotz, J. M.
-------------- Shea, and W. E. Dixon, “Event triggered
i ' control of multiagent systems for fixed and
time-varying network topologies,” IEEE
Trans. Autom. Control, vol. 62, no. 10, pp.
5365-5371, Oct. 2017.

Actuator 7/

|

' Model-based

| .
| event-triggered
|
|
|

control schemes
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Event-Based Sampling Schemes | Limitation 1 ‘lmltatlon‘ -‘

|
' 1t should be emphasized that there are 1O "

no any schemes which can overcome
all three limitations

|
|
|
|
| nt 7
I E
l L ___E E\;ellt
'"Trigger \™ ; - - -
: I G ‘
| ' N
|
|
|
I
|
I
|

Actuator 7 Sensor i

JCS

Control 7
' Neighbors 9

I
|
|
|
|
|
Communication Network S __
[ _ b
% Solution1

Agents’ dynamics

Neighbors

The control {/ Threshold uses

|

|

|

. updates happen Model-based
|

|

1

|
|
the triggered !
|

only at itsown | | signals; |1 event-triggered
event instants Y State-lndependent: control schemes
\ / I\ threshold; 7\ )
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[ Model-Based Event-Triggered Schemes

Event-Triggered =
Schemes

L. Ding, Q.-L. Han, X. Ge, and X.-M. Zhang, “An overview of recent advances in event-triggered consensus of multi-agent
systems,” IEEE Transactions on Cybernetics, vol.48, no.4, pp. 1110-1123, 2018.
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Model-Based Event-triggered Schemes ’ |

. . . |
1 v/ To predict its own and neighbors’ states |
: based on the received information at last :
|
|

Actuator i Sensor i

|
I triggered instants

: v" The ETC is based on its estimation error

/

ent
ctor i

Estimators

|
|
|
|
|
|
|
|
|
|
|
| A— P /
I Né&Tetrbors
|
|
|
|
|
|
|
|
|
|

Control i |

J]
|
|
|
|
|
|
|
J :
Communication Network :
% » Open-loop estimation approach |
l [Garcia et al. (2014)], [Yang et al. (2014)1
|
|
|
|
|

» Closed-loop estimation approach
[D. Liuzza et al. (2016)] I
/

Agents’ dynamics
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Model-Based Event-triggered Schemes Open-loop estimation approach

| I/ Estimator:

Sensor J Tj(t) = AZ;(t),t € [ty. 4 1)
7

I
I y .
I .’Ej(t) = mj(tgc),j e N;
|
I Control protocol:

I
I
|
|
|

——KEZ% —a;(t) |

Actuator

Estimators

|
|
|
|
|
|
|
|
|
|
|
| A— P /
I NéTetbors
|
|
|
|
|
|
|
|
|
|

Control i |

ETC filles( i(25 (1))

o
Communication Network % efij (t) = ZU?: (t) — Iy t)

: (
: zi(t) = Z a;j(&;(t) — 2;(t))

Agents’ dynamics

D. Yang, W. Ren, X. Liu, and W. Chen, “Decentralized event-
triggered consensus for linear multi-agent systems under general
directed graphs,” Automatica, vol. 69, pp. 242249, Jul. 2016.
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Model-Based Event-triggered Schemes Closed-loop estimation approach

I I/ Estimator:
() = Az (t) + Buy; (6|t € [t} 11),1)
2i(t) =x;(t)),j € N;

Actuator i Sensor i

Control protocol

ent
ctor i

Estimators

|
|
|
|
|
|
|
|
|
|
|
| A— P /
I NéTetbors
|
|
|
|
|
|
|
|
|
|

Control i |

|
|
|
|
|
|
|
—’ '
| (
Communication Network |

Agents’ dynamics

:
i
i =Te fz'j(||€z'j( )
:
i

D. Yang, W. Ren, X. Liu, and W. Chen, “Decentralized event-
triggered consensus for linear multi-agent systems under general
directed graphs,” Automatica, vol. 69, pp. 242249, Jul. 2016.
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Model-Based Event-triggered Schemes [

Continuous communication Is

Actuator i Sensor i

|
|
no longer needed,; .
Agent i L System dynamics is not limited. ;
e ER] L | e '

/ 3 VS
Control i |= ( Estimators e I

Disadvantages
J

Communication Network

I
|
Costs and complexity are :
Increasing due to the deployment :
of estimators; |
The system dynamics matrix :
should be known a prior. I

Agents’ dynamics

i;(t) = Ax;(t) + Bu,(t),i =1,2,- -

|
|
|
|
|
|
|
|
|
|
|
| A— P /
I Né&Tetrbors
|
|
|
|
|
|
|
|
|
|
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I Sampled-Data-Based Event-triggered Schemes

Event-Triggered =
Schemes

L. Ding, Q.-L. Han, X. Ge, and X.-M. Zhang, “An overview of recent advances in event-triggered consensus of multi-agent
systems,” IEEE Transactions on Cybernetics, vol.48, no.4, pp. 1110-1123, 2018.
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Key characteristics

Sampled-Data-Based Event-triggered Schemes

I v The event detection is only carried out !

': at each sampling instants;

I v The ETC is based on its sampled-data

-

Actuator 7 Sampler i

Agent i 'l

|

- .% —— 3 |
| Event |

i T‘lgger\ Detector 7

"T"""

," Control protocol: |
wit) = =K Y ag(z(tifh) — z;(t, 4 b))

JEN;

Control \

|
|
|
|
|
|
|
|
|
|
| _ !
| ’ _ \\
|
|
|
|
|
|
|
|
|
|
|

|
|
I
Neighbors
J |
AP (. ETC: fi(llei(kh)|| < Aq(2i(kh))
Communication Network | |
|
I
|
|
I

Nglghbors
N

ei(kh) = x;(t: h) — x;(kh)
Z ai;(zi(tih) xj(tk(t) h))

h———————————————————————

\_———————————

G. Guo, L. Ding, and Q.-L. Han, “A distributed event-triggered
transmission strategy for sampled-data consensus of multi-agent
systems,” Automatica, 50(5), pp. 1489-1496, 2014.
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Sampled-Data-Based Event-triggered Schemes

Transmission rate on time interval [0, Th]:

1 T—1 N _
e
TSV N, Lo Liey P

Actuator 7 Sampler i

_.l_______

; |
1l . | Event
: T‘lgger\ Detector 7

IR I ; 1 If transmitted successfully
Control i \ % / pk B O OtherWISG
2 7
Neighbors TS . - . .
T -t 2 The co-design issue comes to designing

the event parameters and the controller
gain K simultaneously

min ||J —J*| /

- s S e O S S S IS D S D S D e e e e e

Communication Network
|
, [J

G. Guo, L. Ding, and Q.-L. Han, “A distributed event-triggered
transmission strategy for sampled-data consensus of multi-agent
systems,” Automatica, 50(5), pp. 1489-1496, 2014.
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Sampled-Data-Based Event-triggered Schemes e o,

v Continuous monitoring and
computation are no longer needed,;

Actuator 7 Sampler i \

— o o o o o oy,

. e e e

Agenti | P v' Zeno behavior is naturally excluded.
- .{ _———f - ! I v | m e m e e e e e e e e = e = = s
e o, | Vs
\ / — o - - - - - — — —
Control ¢ <
Neighbors s,/ ! Disadvantages
N =z | ——m e e e mm - — -

I
|
I
Communication Network : v The sampling period is required to |
. be identical for all agents; :
: v" It inherits the shortcoming of !
. :
|

|

sampled-data systems, such as
some useful states may be ignored./:

|
|

l

|

|

l

|

|

l

|

l i |
| p— -
|

l

|

|

l

|

l

|

|

l
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I
L
L
Event-Triggered = Self-Triggered Sampling Schemes
Schemes

L. Ding, Q.-L. Han, X. Ge, and X.-M. Zhang, “An overview of recent advances in event-triggered consensus of multi-agent
systems,” IEEE Transactions on Cybernetics, vol.48, no.4, pp. 1110-1123, 2018.
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—

Actuator 7

*| Sampler i/

\ | Self-Triggered
\ Predictor i

-

~
~

-~y -
e I b

Control i =

Neighbors

Communication Network

Agents’ dynamics

\

/
1,4\-

\-

\
e e

,: The next sampling instant is predicted
|
: knowledge of plant dynamics.
|

|
|
based on the last triggered data and the :
|
|

uz(t) =K Z az-j

|
I |
' |
' |
' |
! JEN; I
' |
' |
' |
' I
|

N
8
.
~
4
Rl
~—
)
.
~
[
ol
—~
~
SN
~—

Update instants:

7I;H—l — t;:-c + N 'CCZ( ;c)axj(t‘ljg(t)))

D. Dimarogonas, E. Frazzoli, and K. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE
Trans. Autom. Control, vol. 57, no. 5, pp. 1291-1297, 2012.
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Self-triggered Schemes
Y |

—

Actuator 7 * Sampler 7/

| v Avoiding continuous event |
: monitoring and computation. I

\| Self-Triggered
\ Predictor i

-

~
~

-~y -
e I b

Control i =

Neighbors

: v Over-approximation by individual
, agent on the state of environment
: and the network;
|
|
|

Communication Network

=

Agents’ dynamics )
v" More conservative than the event-

triggered schemes. !
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Event-triggered L
Schemes

I Others Schemes

L. Ding, Q.-L. Han, X. Ge, and X.-M. Zhang, “An overview of recent advances in event-triggered consensus of multi-agent
systems,” IEEE Transactions on Cybernetics, vol.48, no.4, pp. 1110-1123, 2018.
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Some other types of event-triggered schemes

/ Dynamic Event- g Team-Triggered

Adaptive Event- '
Triggered Schemes | | Schemes

Triggered Schemes

Threshold function is

| |

Event parameters can ' I

) . | |

dynamically adjusted | |
I

L

! |

be adjusted based on

|

: Combing both event-
the changes of system :

]

based on the changes and self-triggered

— o o = o o e

) : schemes.

dynamics. of system dynamics. ,
L I o e e e — e e / l o e e o N

X. Yin, etc., Int. J. Control,

89(4), 653-667, 2016. X. Ge, etc., IEEE Trans. C. Nowzari, etc. IEEE

X. Ge, etc., IEEE Trans. Syst., Man, and Cybern. Trans. Autom. Control,

Ind. Electron., 64(10) Syst., 50(9), 3112-3124, 61(1), 34-47, 2016.

8118-8127, 2017. 2020.
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A huge revolution of power grids

(S, Power station

» Centralized power generation

> One-way power flow |
» Few customer options i

VS

(& Power station

; Apartment
buildings

(with hydrogen-car
generator)

» Centralized and distributed generation

» Flexibility in demand

. > Two-way power flow
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Energy Storage  EV Storage
u - -
/ E& Municipal
. o Customers
Residential N - —
Renewable 428 s Community
wm’lgﬂ:ﬁﬂ%%m e Customers
HEE pier -
Local € =7 u;:rz"ﬁ 7)
Generator-—-m $0) Residential
N\ ¢ yT— Customers
. W it g
WI nd | P .
Farms 4T 2 Commercial
T - ) Customers
EV. Heat In-Home Electricty
Solar - = Clager Metor Dy MO v bl Do S T— o
Industry
Customers

Farms
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Microgrid

Characteristics: :
> Low-voltage distribution networks |
|
|

» Grid-connected & islanded

Fundamental control issues:

» Frequency synchronization

2
(5

/

Solar Photovoltaics

» \oltage regulation

|
|
|
|
|
» Power sharing :
|
|
|
|

» Economic dispatch

Various applications: Hospitals, campuses and isolated communities
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Cyber-Physical System (CPS)

S

l\ Generator

'
iy U

Wi Turines EWS’“’W

Srtaoetsic The communication topology
can be different from the
physical topology

-

Load ‘

ll""

-~
/’, 4 \\\ ,’ 4 \\\ l’ 4

Cyber layer:
Agents exchange
Information via a
communication
network

Physical layer:
Units in MGs are
connected by
transmission lines



SWI N SWINBURNE

Practical Example in Microgrids BUR [

Hierarchical Control Framework of Microgrids

(| Tertiary Control )

« To manage and optimize power
' dispatch
I

\)

% Centralized & distributed
/)

Slower

L s

Secondary Control
« To compensate the deviation of
frequency and voltage
° Centralized, decentralized & distributed/

e &

Primary Control

« To maintain voltage and frequency
stability, and power sharing

.+ Decentralized Faster

Solar Photovoltaics

~




SWI N SWINBURNE

UNIVERSITY OF

Practical Example in Microgrids BYR |

Distributed event-triggered secondary control in AC microgrids

» Each DG can be regarded as an agent
which can communicate with neighbors

N

Ll

1
Wind Turbines Energy Storage -—Ll.
Distributed

Primary Control

Generator

Y

Utility Secondary Control
Solar Photovoltaics SJ __________________ | |
Cantrols Inner Current Voltage Loap Droop |[Wril| | Secondary Neighbors
Loop Control Control Confrol V] | Control Information

ple i T
Power | | Local
PWM Caleulation || || | Information

Load

> Primary Control: power sharing and | Y T T T T T T EeeY—/——— "
frequency/voltage stability; £+ Ml A I ”
> Secondary Control: regulate the : LC Fiter 7T Cometor
frequency and voltage to reference values o o

L. Ding, Q.-L. Han, and X.-M. Zhang, “Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an
event-triggered communication mechanism,” IEEE Transactions on Industrial Informatics, vol.15, no.7, pp. 3910-3922, 2019.
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Distributed event-triggered secondary control in AC microgrids

Primary Control

Hierarchical control of DG i

Wi = Wp; — miP;

I
|
|
Distributed / V — V 7 — nQ
i l ni Lt
Primary Control Secondary Control

|
|
|
|
|
- T T T T T T T T T T T T T T T = = | [
| »”~ ~\\|| I : . h f . .
| ?nergmren{ Voléagr;rLfop .’ (:E)rotc;pl Wn?‘ . lry IEerighbgrs | | Wi. t e Output I‘equenCy, |
oop Contro onro ontro ontro ormation -
| : = 1\ V;ill T : V3. the magnitude of output voltage; |
.28 7 . .
: J lpow:f |: o 1 | | wng the nominal set point of frequency; :
B Caleulafion | | | Information || 1 V,;:the nominal set point of voltage magnitude; i
nit
I:::::::::::::::.;I.::ll::::::::::: : Pi:the active power output; :
| ¥ | Q;; the reactive power output; !
Iy L1, Ry Ly Ry L N = l
| T gpiiiiny NS I wel | m,: the frequency droop control coefficient; :
:]_)c,, — —— Bus, : I n;: the voltage droop control coefficient. l
--------------------------- I I
bk e e e e e e e e e e e e e e e e e e e e e o o = |

L. Ding, Q.-L. Han, and X.-M. Zhang, “Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an
event-triggered communication mechanism,” IEEE Transactions on Industrial Informatics, vol.15, no.7, pp. 3910-3922, 2019.
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Distributed event-triggered secondary control in AC microgrids

Secondary Control

. e ~ _ w
p o i Wi = Wy — miP; = u;

v Power || Local
PWM Caleulation || || | Information

where u;” is the auxiliary control input of w;.

. . . |
Hierarchical control of DG i l Wi = Wy — m;P;
I
P Contral Distributed | Vi =Vni —n;0Q;
rimary L.ontro Secondary Control !
T | T : Taking derivative of w; yields

Inner Current Voltage Loop Droop LWnill Secondary Neighbors

Loop Control Cortrol Contraly }“ \Control Information :

I

I

|

I

I

Then, the nominal set point is determined by

|
Iy, L A o
| e - Sp— Cfé Output MG | | .
et C t = :

L omector | : Whi (ul +mlPl) ds
DG, —— - Bus; |

___________________________ I

e e e e e e e e e e e e e e e e e e e e e e e = = e |

L. Ding, Q.-L. Han, and X.-M. Zhang, “Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an
event-triggered communication mechanism,” IEEE Transactions on Industrial Informatics, vol.15, no.7, pp. 3910-3922, 2019.
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Active power reference

The balance between the total generation active
power, load demand and power losses can be

Hierarchical control of DG i

| |
| |
| |
: Distributed I described b :
Primary Control Seconl;al:yl(l]zntrol | y I
____________________________ | |
| I | N p _yN pL
I Immer Current Voltage Loop Droop Wnil! Secondary Nejghb(.)rs l : 1=1 Pl 1=1 Pl’ + PlOSS :
| Loop Control Control Control Vo] | Control Information l L - .
| — o | | ' where P;" is the load demand at bus i, and !
: i | N T - . ) !
| v ey N1 ryer || Progs = Y- ~ *lactive - :
| P_M Caleulation || Information | | Wlth a belvl Ma.leum ' re . DeSIred
Ll 41___I|_ _________ N T generation utilization level
STSSFSSSS=sSsSSSsgSSossossssss | 1 injection s se.
| |
l L R [ Ly Rei Lci I
VE A Nt o IMG' P~ (14 ,14 (GasZimrt |
Het onnector — §N M
|DG,r — = Bus; : | l C() Moo ij=1 B |
| |

L. Ding, Q.-L. Han, and X.-M. Zhang, “Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an
event-triggered communication mechanism,” IEEE Transactions on Industrial Informatics, vol.15, no.7, pp. 3910-3922, 2019.
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Control objectives

Hierarchical control of DG i

Ad:Zﬁl PiL ]

I I

I I

I I

i I N pM I

Primary Control Sﬂﬁ;;?;‘gﬁﬂtml | 2i=1 P; J :

6 N 1 l

| Inner Current Voltage Loop Droop Wnil! Secondary Neighbors || | I |

| Loop Contrel Control Control Vm’“ Control Information I : I

I P ] G || T l I I

| v Power || Local l | I

| PWM Calculation || Information | I - . . . . . !

L] L Ol Control objectives: design distributed secondary |

I_:::V:::::::::::.;I.::_:::::::::I 1 controllers to achieve: :
|

T4 Mfl At I ol v Frequency regulation v Active power sharing |

|DG. LC Filter 7@ Connector B | | hm |Wl _ Wref | — O hm |)~l _ /1d | — 0 I

Lo o e e | I t—oco t—o0 l

Lo e |

L. Ding, Q.-L. Han, and X.-M. Zhang, “Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an
event-triggered communication mechanism,” IEEE Transactions on Industrial Informatics, vol.15, no.7, pp. 3910-3922, 2019.
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] ) ) |
Distributed control of DG i with : Event-triggered communication |

. |

event-triggered communication / tr+1h = inf{kh|f (kh) > 0]|f (kh) > 0} |

e

- Tl : Frequency controller !

——————— — — I I

Dot S Sl =k ) ay (Wu(tkh) w (thyh))

Controller | | . | :

A A I I | JEN;

\ ! ! : i I

\L Ev{m ,E)' % i : —kai(PiMWi(t) — Wref) :

S~ ! ! Active power controller !

|

L T~ : ul = —k,(PM2,(t) - PF) l

_____ Communication Network ees T~ I

------------------------ : —k; Z]EN a;j (4 (tkh) A (tk(t)h)) [

I |

Neighbors | +k3 ZjENi aij (Zi(tkh) - Zj ( k(t)h)) |

| : - ' '

L Zi = ke Yjen, aij (zi(tch) — 7 (tljc(t)h)) l

SWINBURNE
UNIVERSITY OF

TECHNOLOGY

L. Ding, Q.-L. Han, and X.-M. Zhang, “Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an
event-triggered communication mechanism,” IEEE Transactions on Industrial Informatics, vol.15, no.7, pp. 3910-3922, 2019.
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Case studies

| |
| |
| |
| DG 1 I
| |
| |
| |
| |
: DG 2 DGs || |

|
| — |
| |
| |
| |
| : |
| |
I Physcal line ™., I
: .............. Comttimicaionlink DS Do :
| |
e o e o o e e e e e e e e e e e e e e e e e Em _— e m om o o o o e e e e e N |

A modified IEEE 34-bus test system Communication topology

L. Ding, Q.-L. Han, and X.-M. Zhang, “Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an
event-triggered communication mechanism,” IEEE Transactions on Industrial Informatics, vol.15, no.7, pp. 3910-3922, 2019.
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Case studies
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Frequency (Hz)

)]
©
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©
)

(&)
©
»~

(d)

o

Plug-and-Play ability: at t=10s, DG 6 is plugged
into the MG and is removed at t=20s

SWINBURNE
UNIVERSITY OF
TECHNOLOGY

L. Ding, Q.-L. Han, and X.-M. Zhang, “Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an

event-triggered communication mechanism,” IEEE Transactions on Industrial Informatics, vol.15, no.7, pp. 3910-3922, 2019.
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Case studies

3 (a) Periodic communication 60.2 (c) Periodic communication 600 (c) Comparision
P, - —, I Feriodic Communication
P, — 5 60 f, T - Event-Triggered Communication
P B f 500
31 = 598 3
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P o —_— c
5l = 59.6 5 o
- j & 400
RS,
59.4 5
4 5 0 1 2 3 4 5 E
i(s) t(s) 8 300
3{b) Event-triggered communication 60.2{d) Evept-triggered cpmmupication ué
©
]l = —f, £ 200
= 60 £ S
2 — 2 =
3| | 2 598 s
i E — 100
s & 596 's
59.4 0
5 0 1 2 3 4 5
t(s) Node
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